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Co-directors Michéle Sebag (DR/CNRS), Laboratoire de la Recherche en Informatique
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1 Introduction (Summary)

The main paradigm of developing general-purpose machine learning algorithms is trial and error. Of course, the
process is not random, and the richness of the different motivating principles that guide the process (learning-
theoretical, neuroscientific, statistical, algorithmic/computational, just to mention the most important principles)
makes machine learning one of the most exciting research areas. Nevertheless, at the end of the day, whether a
family of algorithms, a given algorithm, or an algorithmic trick survives is entirely decided by whether it works in
practice, where “works in practice” may be defined by “there is a well-defined subset of practical problems on which
it is (one of) the best approach(es)”. This general definition leaves the playing field wide open for radically different
solutions for the same problem as long as there is a wide variety of applications calling for different techniques.
For example, depending the number of features and the number of instances in supervised classification, one could
choose between quadratic-time kernel methods, linear-time AdaBoost, or L1-penalized logistic regression. There is
no reason to exclude any of the families represented by these algorithms from either the practitioner’s toolbox or
from research, as long as they answer to practical problems of a well-defined niche.

Measuring whether an algorithm works on a well-defined subset of practical applications should not be a prob-
lem. There are several reasons why it is. First, families of applications have fuzzy borders. Benchmark repositories
are usually ad hoc, and there is no generally accepted ontology of problem types (for example, what “large scale”
means depends on whether you are in a small research lab or you work for Google or Microsoft Research). What
benchmark sets are used to assess an algorithm is essentially part of the research freedom of the researcher who
is in charge to “prove” that his/her algorithm works, so selection bias is usually present even in the most carefully
designed experimental setups. Second, there is no widely accepted standard methodology to compare methods. In
most of the classical designs (e.g., 10-fold cross-validation), significances are usually largely overestimated (Diet-
terich, 1998; Bengio and Grandvalet, 2004). Publication pressure (it is one of the easiest ways to reject a paper to say
that it is not “significantly” better than other approaches) also compels authors to overstate differences. Third, proper
hyperparameter optimization is computationally very costly and so it is usually done in an ad hoc, non-reproducible
way. Even when the proposed algorithm has an open-source turn-key implementation (which is a small minority of
the research papers), the experimental design of hyperparameter optimization is rarely described in detail or made
available as part of the software package.

From a scientific point of view this mess is not necessarily detrimental: it favors exploration. At the same
time, the lack of a rigorous empirical approach makes it rather hard for a novice practitioner to find useful advice
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on what technique he or she should try on a given practical problem. To a certain extent it also distorts research:
useful algorithms and tricks pop up rather randomly, the exploration of techniques is not guided by the scientific
method (that proved to be immensely successful in natural sciences), and there are a lot of “folklore” believes
floating around that are not necessarily backed by rigorous experimental results. In this thesis project we propose
to apply the scientific method to machine learning. We will explore two lines of research. In the first (Section 2.1)
we will build on recent work applying modern experimental design for algorithm selection and hyperparameter
tuning (Hutter, 2009; Hutter et al., 2009; Bergstra et al., 2011; Bergstra and Bengio, 2012; Snoek et al., 2012;
Thornton et al., 2012). The main thrust of this sub-project is the multi-problem approach of Brendel and Schoenauer
(2011), Lacoste et al. (2012), and Bardenet et al. (2013): we will explore the interaction between methods (and
hyperparameters) and data sets to find out whether and to what extent experience can be generalized across data
sets. The output of this project is a toolbox for practitioners and a stockpile of knowledge on what algorithm works
on what (kind of) data sets. This second output will feed into the second line of research: we will ask the question
of why certain methods work on certain data sets (Section 2.2). There are several principles, mostly derived from
theoretical results, that explain the success of methods and guide algorithmic development; our goal is to verify
these principles and to discover new ones based on an empirical approach. We will study algorithms as natural
phenomena, form hypotheses, design and evaluate experiments, and carry out measurements that could validate or
refute our hypotheses. Whereas the first sub-project is a rather low-risk technical/engineering topic, this second line
is open-ended: the student will have a lot of freedom in asking questions and designing computer experiments. The
ideal outcome of this line of research is the discovery of new learning principles that can guide algorithmic design.

2 Research themes

2.1 Data-specific algorithm selection and hyperparameter optimization

Hyperparameter tuning is a crucial yet often overlooked step in machine learning practice. Recently, it was shown
that the state of the art on image classification benchmarks can be improved by configuring existing techniques better
rather than inventing new learning paradigms (Pinto et al. 2009, Coates et al. 2011, Bergstra et al. 2011, Snoek et al.
2012, Thornton et al. 2012). Hyperparameter tuning is often carried out by hand, progressively refining a grid over
the hyperparameter space. Several automatic hyperparameter tuning methods are already available, including local-
search based methods (ParamILS of Hutter et al. 2009), estimation of distribution methods (REVAC of Nannen
and Eiben 2007), and surrogate-based methods Hutter (2009). Recently, Bergstra et al. (2011) successfully applied
surrogate-based optimization methods to tuning numerous hyperparameters of deep belief networks. The method
combined brute force computational power with building a model of the behavior of the cost function (validation
error) in the hyperparameter space, and it could significantly improve on manual hyperparameter tuning. In a similar
setup, Thornton et al. (2012) applied surrogate-based optimization for a large number of classifiers from the WEKA
package, outperforming the state of the art on a large set of problems.

What may still make experienced practitioners better at hyperparameter optimization is their ability to gener-
alize across similar learning problems. For example, if somebody in the past successfully applied a classification
algorithm A to the popular MNIST dataset with a given set of hyperparameters x, he or she would certainly use
this set as a hint (or “prior”) to choose the hyperparameters of A when tuning A on a slightly noisy or rotated ver-
sion of MNIST. Bardenet et al. (2013) recently formalized this idea and showed that collaborative hyperparameter
optimization can outperform single-task optimization.

In this sub-project we will tackle the following problems.

1. COMPUTATIONAL/METHODOLOGICAL ISSUES. Sequential model-based optimization (Jones, 2001; Lizotte,
2008) has proved to be a suitable framework for single-task continuous hyperparameter optimization since
it allows a neat Bayesian treatment of prior knowledge and because it handles the exploration/exploitation
dilemma efficiently. It has also been the method of choice of Bardenet et al. (2013) for the same reason:
by embedding data sets into a continuous meta-parameter space and replacing the regression setup with a
ranking-based approach, generalization across data sets can be handled in the same way as generalization on
a single set across hyperparameters of the algorithm. However, there are two problems with this setup. First,
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it is based on Gaussian process (GP) regression, and so it will not scale. Second, there are several interesting
cases when the optimization has to be carried out in a non-continuous, sometimes hierarchically structured
spaces (e.g., algorithm selection is discrete, or adding a new layer in a neural network adds a fresh set of new
hyperparameters to be optimized, making the space of variable dimension). Exploring algorithmic solutions
for this problem will be the first step of this sub-project.

Another interesting question is how to combine this experimental design setup with sub-sampling. It would
be clearly advantageous to first rapidly explore the error surface using small samples than concentrate on only
promising hyperparameters or algorithms. Phase transitions (abrupt changes of the optimum as the data size
grows) make this idea difficult to implement, nevertheless, there are some interesting techniques to explore
(Hoeffding races of Maron and Moore 1994 and Domingos and Hulten 2001; sequential testing of Krueger
et al. 2012; scalable bootstrap of Kleiner et al. 2011).

2. MULTI-PROBLEM OPTIMIZATION. Bardenet et al. (2013) paved the road for collaborative hyperparameter
optimization, but there remain several open problems. Perhaps the most important one is the issue of meta-
features. Bardenet et al. (2013) used simple descriptors (number of instances, features, classes; intrinsic
dimensionality) and found some light correlation between, e.g., complexity parameters (such as the number
of leaves in trees) and the sample size/dimensionality ratio, which could be exploited for multi-problem infer-
ence. There is obviously plenty of space for designing easy-to-compute statistics which better predict optimal
algorithms and hyperparameters. Finding these descriptors are closely related to understanding why certain
algorithms work on certain kinds of problems, so this sub-project can be iterated with the theme described in
Section 2.2.

Collaborative algorithm selection and optimization closely resembles collaborative filtering (with “movies”
replaced by algorithms or parameters, and “users” replaced by data sets), and so a second line of research will
be to explore the possibility to adapt collaborative filtering techniques for this problem. Finally, exploring
the obvious connections to transfer learning and multi-task learning (Caruana, 1997; Niculescu-Mizil and
Caruana, 2005a) will also be part of the thesis.

2.2 An empirical approach to machine learning

In this theme we will ask the question of why certain algorithms work on certain kinds of data sets. The empir-
ical basis of the study will be accumulated using the tool developed in Section 2.1. We will follow an empirical
methodology by treating algorithms as natural phenomena, observing their actual behavior on real data, designing
observables, carrying out quantitative measurements, and inferring general principles.

One generic sub-theme is connecting (training) margin distributions to classifier (generalization) quality. The
large margin principle, at the root of several algorithms and justifications (Boser et al., 1992; Bartlett, 1998; Schapire
et al., 1998) basically says that at the same complexity, larger training margins mean smaller test errors. While it
is true (and widely accepted) in general, using the principle quantitatively in practice is rather difficult, essentially
for two reasons. First, measuring the complexity of a classifier is rather difficult. Complexity measures, even ef-
fective/constructive measures, appearing in theoretical bounds are assigned to function sets rather than to individual
functions. Defining a function set of which a given classifier comes from is inherently ambiguous. In the famous de-
bate on why AdaBoost works (variance reduction vs. large margin principle), one of the most interesting results is by
Reyzin and Schapire (2006): they show that Breiman (1999)’s arc-gv (an aggressive minimum-margin maximizer),
while achieving a larger minimum margin, uses deeper trees than AdaBoost, even when the number of nodes in the
trees (and of course, the number of iterations) are the same in the two algorithms. They then argue that deeper trees
are more complex, and so arc-gv’s overfitting can be explained by the larger (more complex) function class from
which it effectively chooses its classifier. The second problem is that margin distributions (CDFs) cross each other.
When decision stumps are used as base classifiers (so the number of iterations arguably determines the complexity),
Reyzin and Schapire (2006) find that while arc-gv still achieves a larger minimum margin than AdaBoost, its mean
margin is smaller. When margin distributions cross each other, the large margin principle, strictly speaking, does not
postulate anything.



There is now a whole line of research (Shen and Li, 2010; Laviolette et al., 2011; Shivaswamy and Jebara,
2011) which, instead of maximizing the mean margin or the minimum margin, or defining a convex margin-based
loss and hope for the best, tries to control the margin distribution more in detail. The main idea is to maximize
the mean margin while also minimizing (or controling) the variance. We also know that by calibrating the raw
scores produced by AdaBoost (essentially “playing” with the margin distribution), we can significantly improve
its performance under probabilistic measures (Niculescu-Mizil and Caruana, 2005b; Caruana and Niculescu-Mizil,
2006). All this research indicates that generalization is related to some intricate properties to the training margin
distribution. The goal of this sub-project is to pinpoint these properties by searching through various statistics, and
finding those that correlate with the generalization error.

Besides this concrete problem, the theme is open for the student to ask and test other empirically testable ques-
tions. The non-exhaustive list may include “Why isn’t AdaBoost overfitting (as the number of iterations goes to
infinity)?”, “why huge self-tuning ensembles outperform tuned but single models (Niculescu-Mizil, A. et al., 2009;
Busa-Fekete et al., 2011, 2013)?”, or “why the seemingly “simple” covertype data set prefers to boost huge trees
while the (tuned) choice of other UCI sets is rarely more than 20 leaves?”.
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Busa-Fekete, R., Kégl, B., Éltető, T., and Szarvas, G. (2011). Ranking by calibrated AdaBoost. In (JMLR W&CP),
volume 14, pages 37–48.
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