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Summary

In the classical setup for pattern recognition (classification) [1], Bayes’ theorem tells us that we should train on data
in which the class proportions match the prior class probabilities. It turns out that there are several applications where
either the prior class probabilities are unknown, or the goal is not to minimize the classification error symmetrically
among classes, but to minimize the false negative (miss) rate given a preset false positive (false alarm) rate. For
example, in experimental physics, virtually all trigger algorithms work in this way: we have to maximize the rate
of captured events while observing a trigger rate often prescribed by bandwidth or other computational constraints.
Classification algorithms have also been used in recent scientific discoveries of the electroweak production of single
top quarks [2, 3]. The setup is similar: the goal is not symmetric classification but the enhancement of the signal-
to-background ratio for hypothesis testing. Although this thesis will concentrate on applications in experimental
physics, similar scenarios occur frequently in other application areas, such as real-time object detection [4].

Although classification algorithms are widely used in these applications, they are obviously sub-optimal since
they were developed for symmetric classification. More surprisingly, there is very little theoretical work laying down
the foundations for these natural applications. The only exception is a recent paper by Davenport, Baraniuk, and
Scott [5] who coined the term “Neyman-Pearson learning” (NP learning) because of the obvious connection of the
Neyman-Pearson lemma used in hypothesis testing. The goal of this thesis is to explore the landscape of NP learning
and to develop efficient algorithms in this setup.

The plan is to strike a balance between algorithmic development and applications in experimental physics. On
the algorithmic side we will concentrate on AdaBoost [6] which is one of the most influential supervised learning
algorithms of the last decade. The main idea of boosting is to combine several simple models into a final predictor.
The beauty of the algorithm is that the individual models do not have to be particularly good, so many suboptimal
algorithms can be used as base learners. The final classifier is constructed in a stepwise fashion by adding base
classifiers to a pool, one at a time, and using their weighted ”vote” to determine the final classification. The principal
algorithmic-theoretical goal of the thesis will be the development of a Neyman-Pearson boosting algorithm, and
prove a weak-to-strong-learning boosting theorem.

There are several other aspects of NP learning that may be explored in the thesis. First, in most of the appli-
cations the problem is inherently unbalanced. In both triggers and signal-vs-background classifiers it is usual to
have several orders of magnitudes more background than signal. This implies that in both cases a cascade clas-
sifier is a natural choice, and indeed, almost all the real-world triggers consist of a hand-made cascade classifier.
Cascade classifiers are usually used in object detection [4], but there is no comprehensive approach to learn these
classifiers automatically, so an interesting sub-goal of the thesis can be to develop such a principled approach. Sec-
ond, most of the NP learning applications require to train on huge data sets, so the thesis will naturally focus on
large-scale machine learning, a new paradigm proposed recently by Bottou and Bousquet [7]. Studying AdaBoost
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within this framework is another possible subgoal of the thesis. Third, triggers, as object detectors, are based on
multiple-instance training sets [8]: we know that an object is present in the image (or an event has occurred within
a time/space window), but we do not know when and where exactly. Adapting AdaBoost to this setup is another
interesting algorithmic-theoretical question.

On the applications side, we will focus on the development of the JEM-EUSO trigger. The goal of the JEM-
EUSO experiment [9] is to study the properties of ultra-high energy cosmic rays by observing the particle cascade
generated by the collision of the cosmic ray particle and atmospheric particles. Studying the composition, the energy,
and the sources of these particles is important for understanding the universe tracing back to its origins. At the top
of the spectrum, the particle energies can exceed 1020 eV which is roughly equivalent to the macroscopic energy of
a hard-hit tennis ball! The main problem of detecting these particles is that they are very rare: there are only about 1
particle per km2 per century over 1019 eV! To obtain reasonable statistics, the detector has to observe a large portion
of the atmosphere. The goal of the JEM-EUSO experiment is to observe the light emitted by the air-cascade in the
Earth’s atmosphere from the space. JEM-EUSO will be on orbit on the Japanese Experiment Module (JEM) of the
International Space Station (ISS) at the altitude of approximately 400km, starting in 2015. The sensor is a super
wide-field telescope that detects high energy particles with energy above 1019 eV. The observational aperture of the
ground area is a circle with 250km radius which means that the instantaneous aperture of JEM-EUSO is larger than
the Pierre Auger Observatory (currently the largest detector) by a factor of 50 to 250.

The focal plan of the camera consists of 200000 to 300000 pixels (Figure 1/left panel). The events correspond to
linear correlations in the two spatial dimensions as well as between the spatial and time dimensions (Figure 1/right
panel). The angular resolution of the camera is 0.1◦ whereas the time resolution is 2.5µs. The rate of events is about
100 a day. A major challenge is the high background noise in general and also its highly variable nature (cities,
lightnings, etc.).

Figure 1: Images of simulated air showers over the background noise in the JEM-EUSO camera (left panel). Repre-
senting the time dimension (right panel).

The design of the on-board software faces extraordinary challenges. Its main purpose is triggering and selecting
small number of candidate events (vs. background noise) which will be transmitted back to the ground. It has to be
fast, computationally simple (strict limit on power consumption), and produce a low false positive rate (strict limit on
transmission bandwidth) while not missing many high energy events. The collaboration is at the stage of finalizing
the first and second-level triggers. The first-level trigger will look at the image using 3× 3 windows, and select
those that “see” a high number of photons over the background noise (where “high number” might mean only “more
than a couple” per pixel; the photodetectors will have extraordinary sensitivity: they will be able to count individual
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photons!). According to simulations, the trigger rate of this module will be 107−108 s−1. The second-level trigger
will take the candidates of the first-level trigger, and filter them by looking at a small spatial and time window. It will
sweep the image using a 9×9 patterns and also try to find linear correlations in time between neighboring windows.
This procedure will bring down the trigger rate to about 103 s−1.

Our goal in this project is to design the third level trigger. Its task is to bring down the trigger rate to 0.1s−1 which
is a strict limit imposed by bandwidth limitations. For this purpose we are proposing to the collaboration a machine-
learning-based approach [4] that proved itself in real-time face-detection. The approach uses AdaBoost [6] with two
important additions. First, it applies a special base learner based on Haar filters, which are rectangular black-and-
white wavelet-like edge detectors. The main advantage of this approach is computational efficiency which will be
crucial in the proposed module: beside bandwidth limitations, the ISS has also strict limits on power consumption.
The second improvement of [4] is the design of a cascade-classifier, similar in spirit to the multi-level trigger used
in most of the rare-event detectors. Low-level small-complexity classifiers get rid of most of the background images
very fast, and pipeline only a few candidates to higher level classifiers. While this is more complex method at the
training phase, it accelerates the detection procedure by orders of magnitudes. This, again, will be a very important
technical advantage in our application.

The candidate is expected to adapt the multiboost software package to the application and tune the software using
simulated data. The main technical difficulty in adapting [4]’s methodology to the third-level trigger of JEM-EUSO
is the additional time dimension and the fact that we have strict limits on the false positive rate.
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