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1 Introduction

Today, machine learning methods are routinely used in high-energy particle physics to accelerate the discovery
of new phenomena. Typically, standard classification algorithms are used for signal/background separation both
in the online selection (trigger) step [1], and in the offline analysis [2]. The first goal of this thesis to answer
some of the theoretical questions raised by these unorthodox machine learning applications, and to design new
algorithms that improve the analyses. In the second theme we propose to go beyond the standard setup of “manual”
feature extraction followed by classification and to investigate the applicability of recently developed techniques
on unsupervised representation learning [3, 4, 5]. Both themes are motivated by concrete particle and astroparticle
physics experiments (ATLAS@CERN) [6], the future International Linear Collider (ILC) [7], and the Pierre Auger
Experiment (Auger) [8]. Data provided by these experiments will be a natural testbed for methodolgies developed
in the thesis.

2 Research themes

2.1 Learning to discover

The Atlas1 and the Compact Muon Solenoid (CMS)2 experiments, recently claimed the discovery of a new particle
that is very likely to be the Higgs boson [9, 10]. The existence of the particle was prdicted almost 50 years ago to
have the role of giving mass to other elementary particles. It is also the final ingredient of the Standard Model of
particle physics, ruling subatomic particles and forces. The experiment sits on the Large Hadron Collider (LHC) at
CERN (the European Organization for Nuclear Research), Geneva, which began operating in 2009, after about 20
years of design and construction, and will continue operating for at least the next 10 years. The particle discovered
is so far consistent with the Higgs boson, however, it has so far only been seen in three distinct decay channels.
Finding it in other channels is a crucial step in proving that it is indeed the predicted Higgs boson.

The discovery of the new particle makes significant use machine learning methodologies developed in the last
two decades. Typically, standard classification algorithms are used for signal/background separation in the following
non-standard setup. We are given a set of simulated events D =

{
(x1,y1), . . . ,(xn,yn)

}
where x ∈ Rd is a vector of

features extracted from raw observations and y∈{−1,+1} is +1 for signal events and y=−1 for background events.
The raw features are typically obtained in detectors built at particle accelerators, and standardized/aligned features
are extracted using “manually” based on background knowledge in particle physics and models of the detector.

1http://atlas.ch
2http://cms.web.cern.ch
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The goal of classifier design is to find regions of the feature space where the signal is present or where it is
amplified with respect to its average abundance. Once the subregion is found, we wait until the number of events in
the region is significantly higher than that predicted by the pure background hypothesis. Formally (see, e.g., Eq. (97)
in [11]), the goal is to find a function f : Rd →{−1,+1} such that

G( f ) =
√

2
(
(s+b) ln(1+ s/b)− s

)
(1)

is maximized, where

s =
n

∑
i=1

I{ f (xi) = 1∧ yi = 1}

b =
n

∑
i=1

I{ f (xi) = 1∧ yi =−1}.

Whereas G is clearly related to the classical classification error

R( f ) =
1
n

n

∑
i=1

I{ f (xi) 6= yi},

the two are not equivalent. A notable difference is that the expectation of G (and thus the optimal f ) depends on the
sample size n, whereas increasing sample size only decreases the variance of R. Nevertheless, the standard practice
is to learn a discriminant function g : Rd → R on D using standard classification methods, and then use G only to
optimize a threshold θ which defines the function f by

f (x) =

{
+1 if g(x)> θ

−1 otherwise.

The first step of this theme is the formalization of the relationship between G and R. The goal is then to inves-
tigate whether classical classification algorithms (e.g., neural nets, boosting [12], or support vector machines [13])
can be adapted to optimize G explicitly. The final step is the experimental validation of the developed techniques.
The theme is part of a project whose goal is to define and organize a series of data challenges on problems related to
the selection of Higgs boson signals and to the measurement of its properties in the ATLAS experiment.

2.2 Automatic representation learning for imaging calorimeters

Future lepton colliders with center-of-mass energies of around 1 TeV will play a key role in understanding the
origin of electroweak symmetry breaking. This breaking mechanism is intimately coupled to the existence of the
Higgs boson or of the mass hierarchy in the fermion sector of the Standard Model of particle physics. The new
generation detectors for the lepton collider will include a high-resolution pixel calorimeter to precisely measure
the trajectory and the energy of particles produced by the collisions. Technically, a pixel calorimeter will produce
4D data (three spatial dimensions and deposited energy) that will allow us to determine the topology of hadronic
showers to unprecedented detail.

In today’s practice, calorimeter data is analyzed using highly specialized “hand-crafted” algorithms that exploit
prior knowledge on physics processes. To optimize the analysis, we have recently started to use traditional machine
learning algorithms to various reconstruction sub-problems (for example, data cleaning, localizing the interaction,
or classifying the interaction type). To feed input to these algorithms, the raw calorimeter data first have to be
digested into a vector of standardized features (for example, longitudinal a lateral profile descriptors). The classifi-
cation algorithm (more specifically, MULTIBOOST) can then learn a given task based on these “manually” extracted
features.

The goal of this theme is to explore the applicability of deep learning techniques for analyzing calorimeter data.
Deep learning [3] is a new paradigm within the machine learning domain which has already had a major impact
on natural language processing [4] and computer vision [5]. In this approach, the supervised classification step is
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usually preceeded by an unsupervised pre-learning step in which a descriptive representation of the data is extracted
from the raw images. The crucial advantage of the approach is to eliminate the manual feature extraction step and to
automatically discover features that are relevant to different subtasks. Although the theme is directly motivated by
the data analysis problem of the ILC calorimeter, the goal is to develop techniques that are also usable in the Higgs
analysis (ATLAS) and in processing the water Cherenkov signal in the Auger experiment.

3 The candidate

The ideal candidate has a strong background either in computer science, statistics, or physics, and an open mind to
acquire the necessary knowledge in the other two disciplines.
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