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Motivation:

The programming language C is widely used for operating system level code which is both complex (due to  
the need for efficiency and the proximity to hardware) and safety critical. Building environments to verify C  
code has therefore attracted the interest of many research groups, leading to environments such as Frama-
C or Visualstudio/VCC. 

In this Phd, the goal is to explore static testing methods for a realistic subset of C, i.e. test-data are  
generated according certain criteria and techniques and run against „the real code“. A particular emphasis in  
this Phd is put on testing data-invariants of pointer structures, but also classical call-graph based test-case  
coverage criteria are considered, which were represented by an LTL like assertion language. 

These assertions can be represented by graphs which can be checked against the set of „object graphs“ that  
can potentially evolve at runtime. Since such checks are expensive, therefore, this Phd will try to explore  
random-based techniques as developed on the Rukia-system of Johan Oudinet to alleviate the task: Instead  
of checking the entire graph for a particular assertion against the set of potential system states, the check  
will concentrate only a uniform random sample of paths in this graph. For them, path-conditions were  
generated representing a particular execution path on the concrete program, and concrete input can be  
constructed by applying constraint resolving techniques via constraint solvers such as Z3 or Alt-Ergo.

A substantial problem of this approach lies in the fact that random-based exploration requires a good  
approximation to the set of „feasible paths“, i.e. those paths for which the path-condition is actually  
satisfiable; approaches based on taking just the control-fl ow-graph of the program turned out to be ineffective  
because the likelihood to randomly choose an feasible path may be extremely low in practice. A major  
challenge is therefore to find a combination of:

– a „reasonably realistic“ memory model for C
– a combination of invariant-construction, abstract interpretation and code-slicing
– ... in order to get a good approximation of feasible paths before performing random-selection.

The practical part of this Phd consists in 
– Integrating pre-existing AUGUSTE/RUKIA into Frama-C
– Developing an assertion language for data-structure consistency based on LTL

and the pre-existing ADCL2 (Frama C Jessie Plugin)
– implementing new invariant-construction, abstract interpretation and other techniques 

(such as Dekkers Algorithm) in order to perform code-slicing before control-fl ow-graph construction.

– careful statistic exploration of larger program samples.

 

Example:

Example SortedList:
variant struct obj = Node {int content ; *obj  next}

Empty{}

Explanation:
3.1 Temporal Properties
Temporal logics [7] are a powerful tool for expressing complex properties on the behaviour of systems.  
These modal logics provide, in addition to the traditional logic operators, temporal operators in such a way  
that it is possible to describe properties that hold along all (or some) executions of a system. Thus, for  
instance, temporal operators in LTL are  ⵔ (next), ◽ (always), w (eventually) and U (until). Formulae in LTL 
evaluate on execution traces, or sequence of states, starting at the fi rst state, and recursively passing  
through the other states in a sequential manner. Informally, if f is an LTL formula, the meaning of the 
temporal operators is as follows. ⵔf: f must hold in the next state; ◽f: f must hold in every future state; wf: f 
must hold in some future state; and rUf: r must be true until, in some future state, f holds. Moreover, temporal  
logics can be used not only to specify properties over the system behaviour, but also over the shape and  
content of dynamic data structure used during the system execution  as shown in [9].



When testing Java code, it is useful to consider both types of LTL properties:
1. Properties over dynamic data structures. In this case, LTL formulae are not evaluated on sequences of  
system states, as usual. On the contrary, they refer to some dynamic data structure (that can be naturally  
seen as a Kripke structure) and they are evaluated on it. Following this approach, we defi ne the following 
properties over class SortedList given in Section 2.1:

(a) [l:header ]◽(next ! = n u l l  f next:value:compareTo(value) ¸  0). This formula states 
that the list referenced by l:header  is always sorted upward.

(b) [l:header ]◽(next ! = n u l l  f next:value:compareTo(value)  · 0). This formula states 
that the list referenced by l:header  is always sorted downward.

(c) [l:header ]◽(valid(next )⋀w(next  == n u l l ). This formula states that list l:header  is always 
a well formed linked list.

2. Properties over sequences of statements. In this case, LTL formulae refer to the sequences of states that  
constitute the executions of a system. This is the common use of logic LTL in model checkers like Spin. For  
instance, we can specify the following formulae over class SortedList:

(a) ◽l:nelements == length(l ). This formula states that field nelements 
of list l  and the length of l  are equal in every state. Note that length (l ) is 
an external method that traverses the list and returns the length of the list starting 
at l:header . This formula is useful to detect memory leaks due to errors in 

the insert or remove methods provided by SortedList.
(b) ◽(!l : isEmpty() f wl : isEmpty()). This formula states that if the list has 

some element, then sometime in the future, the list will be empty, that 
is, the elements of the list will be removed.

It is worth noting that when using C objects in the LTL formulae, we are invoking a C runtime environment,  
and then giving the results to Spin. To do this, the value returned by the methods can not be a reference  
value, but it has to be a simple data that can be handled by Spin.
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