Chargement...
 

Machine Learning-Robotics

Domaine
Machine Learning-Robotics
Domain - extra
Reinforcement Learning
Année
2011
Starting
Sept. 2011
État
Open
Sujet
Integrity Preserving Policy Learning
Thesis advisor
SEBAG Michèle
Co-advisors
LAVIOLETTE Francois, Université de Laval, Québec
Laboratory
Collaborations
Abstract
Robotic policy learning in-situ requires specific strategies in order to preserve the robot physical integrity during the exploration of its environment.
The goal of the PhD is to propose such strategies, define and establish some PAC guarantees about the incurred risk and experimentally investigate their performance.

Context
Objectives
Work program
Extra information
Prerequisite
Background in Maths and Statistics
Programming skills
Détails
Télécharger IPRL.pdf
Expected funding
Institutional funding
Status of funding
Expected
Candidates
Nicolas Galichet
Utilisateur
michele-martine.sebag
Créé
Dimanche 19 juin 2011 17:55:54 CEST
dernière modif.
Dimanche 19 juin 2011 17:55:54 CEST

Fichiers joints

 filenamecrééhitsfilesize 
IPRL.pdf 19 Jun 2011 17:551456113.24 Kb


Ecole Doctorale Informatique Paris-Sud


Directrice
Nicole Bidoit
Assistante
Stéphanie Druetta
Conseiller aux thèses
Dominique Gouyou-Beauchamps

ED 427 - Université Paris-Sud
UFR Sciences Orsay
Bat 650 - aile nord - 417
Tel : 01 69 15 63 19
Fax : 01 69 15 63 87
courriel: ed-info à lri.fr